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UMBRAL DEFORMATIONS TO DISCRETE SPACETIME

We probably live on some sort of discrete spacetime lattice, at scales

of order lPlanck ≡
√

~GN/c3 ∼ 1.6 · 10−35m, the corresponding time for

which is lPlanck/c ∼ 5.4 · 10−44sec, and the mass mPlanck =
~

c l
Planck

∼
2.2 · 10−5g.

Could we tell? I Likely:

We can discretize all of continuum physics systematically through the

Umbral Deformation.



REVIEW OF ARGUMENTS FOR A

FUNDAMENTAL MINIMUM MEASURABLE LENGTH

(In geometrical Planck units: ~, c, mPlanck ≡
√

~c/GN chosen to be 1).

In a system or process characterized by energy E, no lengths smaller

than L can be accessed or measured, where L is the larger of either the

Schwarzschild horizon radius of the system, RSch ∼ E, or, for energies

smaller than mPlanck, the Compton wavelength of the aggregate process,

λ ∼ 1/E.

Since the minimum of

max (E, 1
E)

is at the Planck mass, E ∼ 1, ; the smallest measurable distance L

amounts to lPlanck.

} For the earth, RSch ∼ 0.9cm; for me, RSch ∼ 5 ·10−26m = 0.5 ·10−10f .

Thus, continuum laws in nature are expected to be deformed, in principle,

by modifications of O(lPlanck).



• Even as something like a fundamental spacetime lattice with spacing

a = O(lPlanck) is likely to underlie nature, continuous symmetries (such

as Galilei or Lorentz invariance) can actually survive unbroken such a

deformation into discreteness, in a nonlocal umbral realization.

I Umbral calculus, pioneered by Rota & associates in combinatorics

contexts, specifies how functions of discrete variables representing ob-

servables get to “shadow” their continuum limit (a→ 0) systematically;

and effectively preserve Leibniz’s chain rule and the Lie Algebras of

the difference operators which shadow (deform) the standard differential

operators of continuum physics. (Reviewed by Levi & Winternitz.)

t Nevertheless, while the continuous symmetry algebras of umbrally de-

formed systems may remain identical to their continuum limit, the func

tions of observables themselves are modified, usually drastically so.

Often, the continuum differential equations of physics are discretized;

then, solved to yield umbral deformations of the continuum solutions.

Complication may be bypassed by umbrally deforming the continuum

solutions directly.



OVERVIEW OF THE UMBRAL CORRESPONDENCE

Consider discrete time, t = 0, a,2a, ..., na, ... Without loss of generality,

consider first the ∆+ discretization (umbral deformation) of ∂t,

∆x(t) ≡ x(t+ a)− x(t)

a
,

; elementary oscillations, ẍ(t) = −x(t):

∆2x(t) =
x(t+2a)− 2x(t+ a) + x(t)

a2
= −x(t) .

Fourier-component Ansatz x(t) ∝ rt, ; (1 ± a)t/a.

Alternatively, in the umbral framework: associative chains of opera-

tors, generalizing ordinary continuum functions, by ultimately acting on

a translationally-invariant “Fock vacuum”, 1.

For the standard Lagrange-Boole shift generator,

T ≡ ea∂t, so that Tf(t) · 1 = f(t+ a)T · 1 = f(t+ a),

the umbral deformation is

∂t 7→ ∆ ≡ T − 1

a
; t 7→ tT−1,



tn 7→ (tT−1)n = t(t− a)(t− 2a)...(t− (n− 1)a)T−n ≡ [t]nT−n,

(“basic polynomials”), ; [t]0 = 1, and, for n > 0, [0]n = 0.

# A linear combination of monomials (power series representation of a

function) will transform umbrally to the same linear combination of

basic polynomials with the same series coefficients,

f(t) 7→ f(tT−1).

All observables F (t) in the discretized world are thus such deformation

maps of the continuum observables. (Eliminate translation operators at

the very end, through operating on 1, so that f(tT−1) · 1 ≡ F (t) .)

The umbral deformation relies on the respective umbral entities obeying

operator combinatorics identical to their continuum limit (a→ 0), by

virtue of obeying the same Heisenberg commutation relation,

[∂t, t] = 11 = [∆, tT−1] .

(Unitary equivalences of the unitary irrep of the Heisenberg-Weyl group,

provided for by the Stone-von Neumann theorem. ∞-dim.)



By shift invariance, T∆T−1 =∆,

[∂t, t
n] = ntn−1 7→ [∆, [t]nT−n] = n[t]n−1 T1−n,

so, ultimately, ∆[t]n = n[t]n−1.

[t]nT−n[t]mT−m ≡ [t]n > [t]mT−n−m = [t]n+mT−(n+m),

Implicit definition of the product through dotting on 1,

[t]n > [t]m ≡ [t]n+m.

For commutators of associative operators, the umbrally deformed Leibniz

rule holds,

[∆, f(tT−1)g(tT−1)] = [∆, f(tT−1)]g(tT−1) + f(tT−1)[∆, g(tT−1)] ,

ultimately to be dotted onto 1.



~ The basic polynomials [t]n are just scaled falling factorials an(t)n,

[t]n = an
(t/a)!

(t/a− n)!
,

so [−t]n = (−)n[t + a(n − 1)]n. Also, [an]n = ann!; for 0 ≤ m ≤ n,

[t]m[t − am]n−m = [t]n ; for integers 0 ≤ m < n, [am]n = 0; ∆m[t]n =

[an]m[t]n−m/am.

The standard umbral exponential,

E(λt, a) ≡ eλ[t] ≡ eλtT
−1 · 1 =

∞
∑

n=0

λn

n!
[t]n =

∞
∑

n=0

(λa)n
(t/a

n

)

= (1+ λa)t/a,

the compound interest formula, with the proper continuum limit

(a→ 0). Since ∆ · 1 = 0,

∆eλ[t] = λ eλ[t].

Could have solved this equation directly to produce the above E(λt, a).

~ The umbral exponential E happens to be an ordinary exponential,

eλ[t] = e
ln(1+λa)

a t.



The umbral exponential serves as the generating function of the umbral

basic polynomials,

∂n

∂λn
(1 + λa)t/a

∣

∣

∣

λ=0
= [t]n.

Conversely, this may be reversed, by first solving directly for the umbral

eigenfunction of ∆, and effectively defining the umbral basic polynomials

through these parametric derivatives, in situations where these might be

more involved.

By linearity, the umbral deformation of a power series representation of

a function formally evaluates to

f(t) 7→ F (t) ≡ f(tT−1) · 1 = f

(

∂

∂λ

)

(1 + λa)t/a
∣

∣

∣

λ=0
.

Can use Fourier representation instead. V Same argument, now on

linear combinations of exponentials ;

F (t) =
∫∞
−∞dτf(τ)

∫∞
−∞

dk
2πe

−iτk(1 + ika)t/a =
(

1+ a ∂
∂τ

)t/a
f(τ)

∣

∣

∣

τ=0
.

The rightmost equation follows by converting k into ∂τ derivatives and

integrating by parts away from the resulting delta function. (Connects

to above by the Fourier identity f(∂x)g(x)|x=0 = g(∂x)f(x)|x=0.)



I Check this umbral transform functional yields

∂tf 7→ ∆F ;

δ(t) 7→
sin(π2(1 + t/a))

(π(a+ t))
;

f =
1

(1− t)
7→ F = e1/aat/aΓ(t/a+1,1/a) ,

an incomplete Gamma function, etc. More direct, in general.

E.g., for trigonometric functions,

sin[t] ≡ ei[t] − e−i[t]

2i
, cos[t] ≡ ei[t] + e−i[t]

2
,

;

∆sin[t] = cos[t] , ∆cos[t] = − sin[t] .

Thus, the umbral deformation of phase-space rotations,

ẋ = p, ṗ = −x 7→ ∆x(t) = p(t), ∆p(t) = −x(t),



readily yields, by directly deforming continuum solutions, oscillatory so-

lutions,

x(t) = x(0) cos[t] + p(0) sin[t], p(t) = p(0) cos[t]− x(0) sin[t].

Since

(1 + ia) =
√

1+ a2 eiarctan(a),

# discrete phase-space spirals,

x(t) = (1+ a2)
t
2a

(

x(0) cos(ωt) + p(0) sin(ωt)
)

,

p(t) = (1+ a2)
t
2a

(

p(0) cos(ωt)− x(0) sin(ωt)
)

.

# Frequency decreased from the continuum value 1 to

ω = arctan(a)/a ≤ 1 ,

effectively the inverse of the cardinal tangent function.



} For θ ≡ arctan(a), the spacing of the zeros, period, etc, are scaled

up by a factor of

tanc(θ) ≡ tan(θ)

θ
≥ 1 .

I The umbrally conserved quantity is,

2E = x(t)> x(t)+ p(t)> p(t) = x(0)2+ p(0)2 = (1+ a2)
−t
a (x(t)2+ p(t)2),

(∆E = 0), with the proper energy as the continuum limit.



MORE SYMMETRIC CASES

The previous ∆+ is not time-reversal odd, and thus its square is

not time-reversal invariant—whence the awkward outspiraling of the

solutions seen.

Can fix this by choosing the time-reversal-odd umbral deformation,

∂t 7→ ∆s ≡ T−T−1

2a .

The eigenfunctions of ∆sEs = λEs are now two,

Es± =
(

λa±
√

1+ (λa)2
)t/a

;

one, Es+, going to the exponential in the continuum limit; but

the other, Es− (nonumbral), simply oscillating to zero—an oscillation

of infinite frequency.

Since [∆s, t 2/(T + T−1)] = 11, the basic polynomials,

[t]ns = (t 2/(T + T−1))n · 1 , would be harder to evaluate; instead,

evaluated from ∆s[t]ns = n[t]n−1
s ,

[t]ns = t
n−1
∏

k=1

(

t+ a(n− 2k)
)

.



# Shortcut: they may alternatively be generated more directly from the

generating function Es+,

[t]ns =
∂n

∂λn

(

λa+
√

1+ (λa)2
)t/a ∣

∣

∣

λ=0
.

E.g., check that [t]3s = (t+ a)t(t− a), etc.

I Rather than using umbral deformations of power series representations

for functions, however, one may again instead infer umbral transforms

of Fourier representations,

f(t) 7→ Fs(t) =
∫ ∞

−∞
dτf(τ)

∫ ∞

−∞
dk

2π
e−iτk

(

ika+
√

1− (ka)2
)t/a

,

to evaluate umbral deformations for general observables, as well as non-

umbral ones relying on Es−, with a minus sign in the kernel of this

deforming functional.

Thus, now there are four solutions to

(∆2
s +1)x(t) = 0 , ;

x(t) =
(

±ia±
√

1− a2
)t/a

.



; The discrete-time solution set

x(t) = (−)Nt/a
(

x(0) cos(ωt) + p(0) sin(ωt)
)

,

p(t) = (−)Nt/a
(

p(0) cos(ωt)− x(0) sin(ωt)
)

,

maps onto itself under time-reversal, for integer parameter N = 0,1.

(∆sx(0) = (−)Np(0).) Eqn only connects even points on the time lat-

tice among themselves, and odd ones among themselves. ; all even

points on the time lattice behave the same for even or odd parameter

N . (However, for the N = 1 solutions, the odd time points hop out of

phase by π, reflection with respect to the origin in phase space, as they

are not dynamically linked to the even points—a phenomenon familiar

in lattice gauge theory.)

N Actually, if f(t) is a solution, g(t)f(t) will also be a solution for arbitrary

periodic g(t+2a) = g(t). Thus, even though (−)t/a is one such possible

g(t), there are even more solutions with arbitrarily mismatched moduli

(phase-space radii) and phases between the odd and even sublattices—

only their frequencies of rotation need be the same. The solution set is

4-dimensional.



For N = 0, the frequency is increased over its continuum limit:

ω = arcsin(a)/a ≥ 1 .

(For N = 1, the arcsine effectively advances by π and the frequency

has an additional component of π/a. Thus, these nonumbral solutions

collapse to 0 in the continuum limit.)

The conserved energy is more conventional,

2Es = x(t)2 + p(t)2.

This time-reversal-odd difference operator is the one to be considered

in wave propagation, to avoid presumably unphysical exponential am-

plitude modulations, growths or dwindlings, peculiar to the asymmetric

derivative seen.



WAVE PROPAGATION

N Simple plane waves in a positive or negative direction x would obey

an equation of the type

(∆2
x −∆2

t ) F = 0,

with the symmetric difference operators ∆s on a time lattice with spacing

a, and an x-lattice of spacing b, respectively, not necessarily such that

b = a in some spacetime regions.

For generic frequency, wavenumber and velocity, the basic right-moving

waves ei(ωt−kx) have phase velocity

vs(ω, k) =
ω
k
aarcsin(b)
barcsin(a)

,

that is to say, the effective index of refraction in the discrete medium is

(barcsin(a))/(aarcsin(b)), so modified from 1 by O(lP ).

• Small inhomogeneities of a and b in the fabric of spacetime over large

regions could yield interesting frequency shifts in the index of refrac

tion, and thus, e.g., whistler waves over cosmic distances. It might be

worth investigating application of the umbral deformation functional on

such waves, to access long range effects of microscopic qualifications of

the type considered.



A more technically challenging application of the umbral tranforms pro-

posed might attain significance on nonlinear solitonic phenomena,

such as, e.g., the one-soliton solution of the continuum Sine-Gordon

equation,
(

∂2
x − ∂2

t

)

f(x, t) = sin(f).

The corresponding umbral deformation of the equation itself would now

also involve a deformed potential sin

(

f(x 2

Tx+T−1
x
, t 2

Tt+T−1
t

)

)

· 1 on the

right-hand side, for the ∆s deformation — and

sin
(

f(xT−1
x , tT−1

t )
)

· 1 for the ∆+ deformation.

; Rather than solving difficult nonlinear difference equations, may

instead infer the umbral transform of, e.g., the continuum one-soliton

solution,

Fs =
∫ ∞

−∞
dχdτdpdk

π2
arctan



me

χ−vτ√
1−v2



 e−iχp−iτk

(

ipb+
√

1− (pb)2
)x/b(

ika+
√

1− (ka)2
)t/a

.



For the ∆+ deformation, instead,

F+ =
∫ ∞

−∞
dχdτdpdk

π2
arctan



me

χ−vτ√
1−v2



 e−iχp−iτk
(

ipb+1
)x/b(

ika+1
)t/a

.

Closed form evaluation complicated, but maybe plotted numerically ...
Could yield qualitative asymptotic insights on the O(lPlanck) modifications
of such “umbral solitons”?

Likewise, the analog integrals with the continuum KdV soliton

f(x, t) = v
2 sech2

(√
v

2 (x− vt)

)

as input,

Fs =
∫ ∞

−∞
dχdτdpdk v

8π2
sech2

(√
v

2
(χ− vτ)

)

e−iχp−iτk

(

ipb+
√

1− (pb)2
)x/b(

ika+
√

1− (ka)2
)t/a

;

and, for the ∆+ deformation,

F+ =
∫ ∞

−∞
dχdτdpdk v

8π2
sech2

(√
v

2
(χ− vτ)

)

e−iχp−iτk(ipb+1)x/b(ika+1)t/a,

could be plotted numerically and compared to the Lax pair integrability
machinery. Any ideas?
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